Metformin, a biguanide derivative molecule discovered from *Galega Officinalis* (trench lilac) for its hypoglycemia properties. Metformin is a drug used during pregnancy in the treatment of type 2 diabetes and disorders associated with insulin resistance including PCOS (Polycystic ovary syndrome). Few studies have investigated the consequences after an *in utero* exposure to metformin.

AIM

The aim of the present study was to assess the effects of maternal metformin administration during pregnancy on the fertility of male offspring mice.

Experimental design

- **Offspring birth**
 - Menstrual cycle
 - Metformin treatment at 300mg/kg/d
- **Gonad analysis or mating**
 - D0
 - D25
 - D90
- **Puberty**
- **Adult**

Fertility of male offspring

<table>
<thead>
<tr>
<th>Number of pups per litter</th>
<th>Ctrl x Ctrl</th>
<th>Treated in utero x Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In *in utero* exposure to metformin resulted in a 25% reduction in male fertility when mated to untreated females (*P*<0.05) n=8.

Figure 1: Experimental design Metformin was administered via water at 300mg/kg/d during the entire period of pregnancy. Control mice were provided with untreated water. Fertility analysis was then performed on the male offspring.

Figure 2: Number of pups per litter from control and *in utero* metformin exposed males. *In utero* exposure to metformin resulted in a 25% reduction in male fertility when mated to untreated females (*P*<0.05) n=8.

Figure 3: Metformin exposed males had a reduction in seminiferous tubule diameter (*P*<0.05) n=225 tubules.

Figure 4: Metformin exposed males had a reduction in germ cell number per seminiferous tubule (*P*<0.05) n=40 tubules.

Figure 5: Similar phenotype where found between males Sc-AMPK +/- exposed to metformin *in utero* & Sc-AMPK -/- and males exposed to metformin *in utero* had more sperm with a thin head (*P*<0.05) n=7 males.

Figure 6: In *in utero* exposed males had lower LH concentrations in the pituitary. Exposed adult males presented with significantly more visceral adipose tissue (*P*<0.05) n=6 males.

Conclusion

In utero, metformin exposure has consequences on the fertility of male offspring, mainly by affecting testis development, seminiferous tubules diameter, germ cells number & the quality of sperm. Together these results complete Tartarín et al 2012 data which shown a negative effect on ability of fetal murine and human testis explants to secrete testosterone after metformin exposure and complete the *in vitro* results from Bertoldo et al., 2014 which have demonstrated a direct effect of metformin on spermatozoa.